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Learning models for psychophysics 

ROBERT R. BUSH, R. DUNCAN I,UCE, and RICHARD M. ROSE, 
Universily of Pennsylvania 

Psychophysics has been concerned almost exclusively with the properties 
of steady-state behavior, whereas learning theory has concentrated on the 
processes by which such behavior evolves. T o  be sure, other distinctions 
between the two fields can be made, but none are quite as striking. Psycho- 
physicists typically ignore (and seldom record) the learning portion of their 
data. Learning theorists often make bold assumptions about asymptotic 
behavior but rarely test them. I t  appears to us  that one should conslder 
psychophysical behavior to be the end-product of a learning process. Thus, 
stochastic learning models should predict at least certain kinds of psycho- 
physical relations. This paper provides one example of how this can be done. 
Comparable approaches have been taken by Atkinson (1963), Atkinson, 
Carterette, and Kinchla (1962), and Luce (1963a). 

All psychophysical experiments involve two or more stimulus presenta- 
tions to a subject. I n  one of the simplest designs, the two-alternative recogni- 
tion experiment, one of two stimuli is presented on each trial, and the subject 
is asked to report which stimulus it is. Usually, the stimuli are "confusable" 
in the sense that the subject makes some errors of recognition. His propor- 
tions of correct recognitions for the two presentations are usually considered 
the basic data. Variables such as the similarity of the two stimuli, the relative 
frequency of the two presentations, and the payoff conditions are basic 
parameters of the experiment as it is usually conceived. 

Analogous experimental designs in learning are commonly called "dis- 
crimination" experiments. The simplest example of such an experiment is 
one in which an animal is presented with one of two stimuli on a random half 
of the trials and is continuously reinforced for a particular response when it 
- -  
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occurs on those trials. The  two stimulus presentations are seldom considered 
tc) be "confusable" in an absolute sense. They may be "similar," but it is 
usually assumed that an animal will asymptotically "learn the discrimination" 
perfectly. His task is to learn the appropriate response for each stimulus. I n  
human recognition studies, on the other hand, the subjlect is taught the 
appropriate identification between stimuli and responses through instruc- 
tions and pretraining. His task is to recognize the stimuli when he sees or 
hears them, and his asymptotic judgments are presumed to be imperfect. 

Formal theories of recognition behavior and of discrimination learning 
have been rather different. The psychophysical models have been built on 
the concept of imperfect discrimination; they assume overlapping probability 
distributions (Tanner and Swets, 1054) or choice axioms that lead to "con- 
fusion matrices" (Luce, 1939). The  discrimination-learning models all in- 
volved two processes-a conditioning mechanism plus a process in which 
either a "similarity index" decreases (Hush and Mosteller, 1951), "irrelevant 
cues" are "adapted out" (Hestle, 1955), or "observing responsus" become 
modified (TVyckoff, 1952). :lsymptotic perfection was always postulated or 
predicted. Thus, in the psychophysical sense, discrimination was assumed 
always to be perfect. 

The models presented below assume imperfect asymptotic discrimina- 
tion, like the psychophysical models, but they also assume a tnechanism of 
behavioral change, like the learning models. The  goal is to describe both 
the pre-asymptotic and asymptotic -behavior of subjects in recognition and 
discrimination experiments. After investigating several models for the two- 
alternative recognition design, we generalize the simplest one to a design 
involving m stirnulus presentations and m responses for which therc is a 
one-to-one correspondence between the two sets. This model is further 
generalized to include possible effects of partial reinforcement. Finally, the 
model is extended to partial identification designs, usually called psycho- 
physical discrimination experiments, for which there are m stimulus presenta- 
tions and k( < m) responses. 

1. An experimenter-controlled-event model 

Suppose that there are two stimulus presentations, s, and s , ,  and two 
responses, r ,  and r, .  Let r ,  be "correct" (i.e., rewarded) when s, is presented, 
and let r, be correct when s, is presented. Let Z,, Z,, - . . be a sequence of 
random variables such that, for all n, Z,, equals 1 if s, is presented on trial 
n and equals 0 if s, is presented on trial n. Assume that on every trial rr, we 
have conditional probabilities, 

(1) PI, - Pr (r1 I S11, 
Yn = Pr ('1 I $ 2 ) .  

Both of these probabilities are modified on each trial regardless of whether S,  

or s, is presented. On  an s, trial, p,, is assumed to increase by direct "con- 
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ditioning" and q, is assumed to increase by a process of "stimulus generaliza- 
tion." On an s, trial, the reverse is true. 

Experimenter-controlled events are assumed in this section, by which 
we mean that the changes in p,, and q, are independent of  which response, 
r l  or r , ,  is made and depend only upon which stimulus is presented by the 
experimenter. 'I'his suggests that the experimental procedure should be 
"noncontingcnt" in the sense that information given to the subject after his 
response should depend only on the stimulus presented on that trial. 

Assuming linear operators and recalling that both p, and q, increase on 
s, trials and decrease on s, trials, we have 

(1 - 0,)prl + 0 ,  if s, on trial n ,  

if s, on trial n ,  

(2) 
(1  - $ l ) q l l + $ l  i f s , o n t r i a l n ,  

if s, on trial n .  

More compactly, we can write 

We consider 0, and 0, to be conditioning-rate parameterssampling 
ratios in Estes' sense and 4, and 4, to be generalized conditioning-rate 
parameters. T o  facilitate an interpretation wc wish to impose, define 

We consider these quantities to be similarity or confusability indices, both 
of which are assumed to be less than unity. We can think of 71, as the simi- 
larity of s1 to s, ,  and of 11, as the similarity of s, to s,; we need not assume that 
similarity is symmetric at this point. 

Once the sequence {Z,, j is specified, our model allows us to compute all 
of the values of p,, and q,, in terms of the rate parameters, 0, and 8, ,  the 
similarity indices, 7j, and y,, , and thc initial probabilities, p, and q,. A case 
of special interest is that in which the Z,, form a Bernoulli chain. We let 

THEOREM 1. If Eq. (2) holds and if {Z,,) .forms a Bernoz~lli chain, then in 
the limit as n -+ m, the e.vpectation of p,, approaches 
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and the exp:pectation of q,, approaches 

where 

PROOF. If one takes the expectations of both sides of Eq. (3) over all 
possible binomial sequences, sets the expectation on trial n + 1 equal to that 
on trial n as n -+ co, and uses Eqs. (4), the assertion is obtained immediately.ll 

This theorem is interesting, in part, because the asymptotic formulas are 
identical to those obtained from Luce's choice model (I,uce, 1959, 1963b). 
I n  his theory, p and q are probabilities rather than expected probabilities, 
and his interpretations of the parameters are somewhat different from the 
interpretations suggested by the present model. The  two similarity indices, 
91,  and q 2 ,  could be taken as equal, but, in any case, they represent properties 
of the stimuli. Luce's signal parameter can be interpreted in this same way. 
The  parameter b in the equations for p and q was called a "bias" parameter 
by Luce. His choice model does not specify the dependence of b on the 
presentation probability P ,  but a simple extension of that model which uses 
an expected utility principle for describing the effects of the payoffs makes 
b proportional to (1 - P ) / P  as in Eq. (8). In  the present model, one would 
expect Bi to be a function of the two payoffs that are possible when si is 
presented and to be independent of the payoffs associated with the other 
stimulus. More specifically, one might expect 8 ,  to be an increasing function 
of the difference between the payoffs for the events s,r, and s,r,. 

The ROC curve or "iso-sensitivity" curve is obtained by eliminating b 
from Eqs. (6) and (7), which yields 

For fixed stimulus presentations but variable presentation probability or vari- 
able payoffs, the observed asymptotes should lie on this curve. The curve is 
symmetric about the line p + q = 1, and it lies above the line p = q because 
VlT2 < 1. 

Similarly, an "iso-bias" curve is obtained if we let 77 = 17, = 712 and 
eliminate it from Eqs. (6) and (7), which yields 

By holding P and the payoffs fixed and varying the similarity of the stimuli, 
we might hope to observe points on this curve, but we have no evidence 
that 0, and 0 ,  do not change as the stimuli are changed. 
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2. Single-sequence analyses, parameter estimation, and evaluation 
of the model 
Theorem 1 was concerned with expected response probabilities, the 

expectations being over all possible binomial sequences of stimulus presenta- 
tions. I n  an experiment, then, one should estimate the expected response 
probabilities by running a large number of subjects and by using the data on 
only a single trial after learning is essentially complete. But, for good reason, 
this is not how psychophysics is done. Data from different subjects are 
seldom combined because of known or presumed individual differences in 
the psychophysical parameters. Instead, many observations are made on a 
single subject. 

I t  has been shown (Rose, this volume, p. 405) that for the model of 
Eq. (2) the distributions of p and q values generated by almost all single 
sequences of Z,, are identical to the asymptotic distributions of p and q values, 
respectively. This result simplifies the estimation of parameters when only 
one subject is run and allows the experimenter to compare several statistics of 
his psychophysical data with predictions generated by the model. 

The model presented in Sec. 1 has six parameters: two initial prob- 
abilities, p, and q, , two rate parameters, 0, and e, ,  and two similarity indices, 
11, and 1, , . Because the branching process generated by this model is ergodic, 
the parameters p, and q, are of little interest in an analysis of one long 
sequence of responses. For this reason we restrict our attention to methods 
of estimating O , ,  O,, > I , ,  and q,. 

Let X , ,  X,,  . . be a sequence of random variables such that, for all n, 
X,, equals 1 if the response is r ,  when stimulus s, is presented and equals 0 
if the response is r ,  when s ,  is presented. Similarly, let Y,, Y,,  . . - be a 
sequence of random variables such that, for all n, Y, equals 1 if the response 
is r ,  on an s, trial and equals 0 if the response is r ,  on an s, trial. (There is no 
need to define X,, on s, trials or Y,, on s, trials.) Suppose we run a single 
subject for N trials using the same stimulus presentation set, the same 
payoff matrix, and a particular presentation sequence {Z,,) . The proportion 
of correct responses to s, is 

.Y - 

11-1 

and the proportion of incorrect responses to s2 is 
\- 
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Using an arrow to indicate convergence in measure as N becomes large, we 
can easily prove 

THEOREM 2. I f  Eq. (2) holds and {Z,,) forms a Bernoulli chain, then 

PROOF. By the Law of Large Numbers (Feller, 1957, p. 141), 

- .  
n=1 

Rose (this volume, p. 41 1) has shown that 
. S 

and that 

Because of this result, we can use Eqs. (1 1) and (12) to estimate p and q. 
Moreover, because we can only "observe" the values ofp,, when s, is presented 
and the values of q ,  when s, is presented, it is clear that$, and 4, are maximum 
likelihood estimators of p and q, respectively. Equations (9) and (10) allow 
us to use these estimators to obtain maximum likelihood estimators of the 
product 71171z and of the bias parameter b. Because P is known, we then have 
a maximum likelihood estimator of the ratio 8,/0, from Eq. (8). 

One must look beyond the asymptotic probabilities to obtain estimators 
for either 71, or 71, and either 8, or 8,. We use sequential properties of the 
model for this purpose. I t  has been shown (Rose, this volume, p. 412) that 

Similarly, it has been shown that 
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and so on. Any two of the four sums in relations (13)  can be used to estimate 
the remaining two parameters, and the other two relations can be used to 
test how well the model fits the data. In addition, other relations, such as 
relation (14) ,  can be used in testing goodness of fit. 

A common "randomizing" practice is to repeat the same sequence of 
stimuli every K trials, where K is something like 20 or 30. Supposedly, the 
subject cannot learn a sequence of this length, and so longer ones are deemed 
unnecessary. Often the proportions of events are fixed within the block of 
trials, and sometimes other restrictions on "randomncss" are imposed. In  a 
two-alternative recognition experimcnt, suppose we use a repcated sequence 
( Z , ,  Z , ,  . . . Z,<} with Kl presentations of s ,  and K ,  = K - K ,  presenta- 
tions of s , .  If X,, is the response random variable introduced above, the 
proportion of correct s ,  recognitions in a block is 

where the sum is over the ith block of K trials. Now, if the process has 
reached equilibrium-if the subject is "at asymptotem-the model in Scc. 1 
predicts that the sequence of response probabilities (p, , p , ,  . - - , p,} is re- 
peated in each block of K trials. Thus, the random variables xi have a com- 
mon distribution and they are independent. The  mean is 

and the variance is 

For a given repeated sequence { Z , , }  and known model parameters, one can 
compute these two moments numerically and compare them with sample 
moments. It  is worth noting that for a fixed mean, the variance is maximized 
when the p, all equal that mcan; the effect of changing p,,'s is to decrease 
the variance of the block proportion. 

If the stimulus-presentation schedule is generated by a nonrepeating 
Bernoulli chain {Z , ) ,  the preceding analysis is not appropriate. The  sequence 
@,.) does not contain repeating subsequences and so the random variables 
xi do not have a common distribution. 

3. An experimenter-subject-controlled event  m o d e l  

The model presented and analyzed in the preceding sections postulated 
that changes in the response probabilities depend only on the stimulus 
presented and not on the response made. 'l'hat model is easily generalized to 
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include respones contingencies, but the analysis is not so easily generalized. 
The  axioms are 

1 ( 1  - 'J1l)PlL + 011 if s, and r , ,  

( 1  - f ' , Z ) P I L  + 012 if s ,  and r ,  , 
P,+l - 

(1 - 42l)P,L if s2  and r , ,  

(1 -- $m)P1l if s, and r ,  , 
(18)  

( 1  - +11)9,, + $ 1 1  if s ,  and r ,  , 

(1 - 412)9tL + 4 1 2  if s ,  and r,, 
Q I l + l  = 

(1 - O Z I ) ~ , ,  if s ,  and r , ,  

( 1  - ozz)qll if s ,  and r , .  

For given p, and q,, and for fixed P = Pr (s , ) ,  the expected values of p,,+,  and 
Qn + 1 are 

(19) E(PVL+1) = PI1 + P(1  - ~ ~ ) v l l P ~ ~  + 0141 - P , , ) I  
- ( 1  - P)~~{4219 ,L  + - 9,1)1, 

and 

? e  can obtain approximations, p and q, to the asymptotic mcan response 
probabilities by assuming that 

P = PIL -: E(Pt ,+l ) ,  
(21) 

q = 411 = E ( q ~ t + ~ ) .  
This is the expected operator approximation discussed elsewhere (Bush and 
Mosteller, 1955, pp. 1 3 8 4 8 ) .  Equations (19)  and (20)  then give 

In  the experimenter-controlled-event model, we found that ( 1  - p)q,'p(l - q) 
was constant. For the more general model, that ratio is also constant 
providcd that 
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This assumption says that the similarity indices are independent of the 
response made, which clearly seems demanded by our interpretation of the 
model. The equation for the iso-sensitivity curve is then 

which is in agreement with Eq. (9) except that p and q in that equation are 
exact asymptotic means, whereas p and q in Eq. (24) are approximate values. 
Of course, if we take O,, = O,, = 8, and O,, = O, ,  - O,, the model reduces 
to the earlier one and so the equation is exact. 

We can also obtain a curve analogous to the iso-bias curve of Eq. (10) by 
defining a quantity b such that 

(25 

Thus, 

(26) 
1 - P  -- 

P 
- rzb 9 

and Eq. (24) gives 

The  curve analogous to the iso-bias curve is then 

The  quantity b is a complicated function of the parameters as can be seen by 
substituting back into Eqs. (22). I n  fact, b is a solution of 

Clearly, b depends not only on the Oij, but also on the similarity indices q, 
and 11,. Thus, it depends on the stimuli as well as on the payoffs and pre- 
sentation probability P. Therefore b should not be considered a "bias" 
parameter. Only in the specialization to the experimenter-controlled-event 
model might we expect b to be independent of the stimulus properties. 

4. A model with partial stimulus generalization 
A possible objection to the models discussed so far is that the conditioning 

effects of one stimulus presentation are completely generalized to the other. 
Although the generalized-rate parameters were assumed to be smaller than 
the corresponding conditioning-rate parameters, the limit points of the 
operators were 1 or 0. Thus, if s, were presented for many trials, both p, and 
q, would approach I .  This assumption can be weakened, which we do for 
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experimenter-controlled events only. In place of Eq. (2), we write 
if s,, 

if$,,  
(30) 

(1 - +1)qtt + +lhl if s,, 
q,t+1 - if s,. 

The asymptotic mean probabilities are obtained as before, which yields 

THEOREM 3. If Eq. (30) holds and if (2,) forms a Bernoulli chain, then in the 
limit as n + cr, the e.rpectations of p,, and q,, approach, respectively, 

When h, = h ,  = 1, the results reduce to the earlier ones, Eqs. (6) and 

An interesting special case arises when we let 17 ,  = q, = 1. Eliminating 
b from Eq. (31), we obtain 

This is a straight line between the points [(I - h2),0] and (l,h,) in the 
(p,q) plane. If h, and h2 are considered to be stimulus parameters, this last 
equation is the iso-sensitivity curve. I t  does not include the points (0,O) and 
(1,l). Indeed, even when 17, # 17, # 1, the curve moves from [(I - h2),0] 
when P = 0 to (l,h,) when P = 1, but it is not a straight line. Data are 
needed to determine whether one can move arbitrarily close to the corners 
(0,O) and (1,l) in the (p,q) plane. If so, then we must set h, = h2 = 1, as in 
the first model presented in this paper. 

5. An m-alternative experimenter-controlled recognition model 
The model for two stimulus presentations and two responses, given in 

Sec. 1, is readily generalized to m presentations and m responses. Let the 
stimulus presentation set be 

{ ~ l , S 2 ,  . - - ,  s,"}, 
let the response set be 

{r1,r2, - . . ,  rmf, 

and require that ri be correct if and only if si is presented. UTe abbreviate 
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Pr  (ri I s,) on trial n by p,,U I i). The  basic axiom, which is a generalization of 
Eq. (2), is: 

If sk is presented on trial n, then for i, j - 1,2, - - ,m, 

where djk is the Kronecker delta (equal to 1 when j = k, and 0 otherwise), where 
the similarity indices, r(i,k), and rate parameters, 8(k), are in the unit interval, 
and where jl(i,i) = 1. 

For m - 2, this reduces to Eqs. (2) provided that we introduce thc 
definitions given by Eqs. (3) and lct q1 = 11(2,1), ? Iz  = ~(1 ,2) ,  0, = 8(1), 
0 2  - 0(2), Pn = P,L(l I 11, and ~ I I  - pn(l 1 2) .  

If we sum both sides of Eq. (34) over j ,  we obtain Cpn+,(j I i) = Cp,,(j I i) 
= 1 because the expression in square brackets in Eq. (34) sums to 0. 

Let {Z,) be a sequence of random variables such that Z, = k if stimulus 
sk is presented on trial n. We say that {Z,,) forms a generalized Bernoulli 
chain when the Zn are independent and P(k)  = Pr(Z, = k) are constant 
probabilities and CTPI"_, P(k)  = 1 .  

THEOREM 4. If Eq. (34) holds and f {Z,] forms a generalized Bernoulli 
chain, then 

li(i,j)b(j) lim E [pIt(j 1 i)] = llJ - -- ' 
71+ W 

Xli(i,k)b(k) 
k-1 

where 
b(k) = P(k)O(k) . 

PROOF. 

E Ipn +d j  I i )  1 I 91 
= 2 P(k)@,,(j I i) + li(i,k)~(k)[djk - Pn(j  I ~ ) I I  

k = l  
"n 

If we then take expectations over the possible values of pn ( j  j i )  and go to the 
limit, we get Eq. (35).11 

Note that b(k) = P(k)B(k) is a bias parameter analogous to Eq. (8). For 
m = 2, it was simpler to use the ratio 

but the m-alternative formula is more symmetric if we do not. 
Equation (35) is the general result obtained from the recognition choice 

mode1 described in Luce (1963b), special cases of which have been discussed 
elsewhere (Luce, 1959; Shipley, 1960). Thus, the experimenter-controlled 
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linear learning model of Eq. (34) yields the same asymptotic means as the 
choice model when any number of alternatives are involved. 

6. Partial-reinforcement recognition experiments 
We can generalize the experimenter-controlled-event model of the pre- 

ceding section to designs in which the subject is sometimes incorrectly told 
that stimulus sh was presented when in fact sk was. This sort of partial 
reinforcement is not common in psychophysical studies, but it is analogous to 
what is done in a number of learning experiments. Let n ( h  I k) denote the 
(constant) conditional probability that the subject is told that s, was presented, 
given that s, was, where 

111 

The  learning axiom we propose is: 

if sk is presented and s,, is reported to hace been presented, then 

Note that the similarity index, ,ti(i,k), depends on the stimulus, sk, actually 
presented, whereas the learning rate parameter, O(h), depends on the stimulus, 
s,, said to have been presented. Our reason for these assumptions is that we 
interpret the v(i,k) to be stimulus parameters (perceptual variables) and inter- 
pret the B(h) to be outcome parameters (motivational variables). 

TIIEOREM 5. If Eq. (36) holds and if (2,) forms a generalized Bernoulli 
chain, then 

(37) 
1 . ~ 1  

lim E[p,,(j I i)] = --.-- 
11) 

PROOF. Taking expectations over the possible presentations and the 
possible experimenter reports, we obtain 

Ebn+4j I i )  I Pn(j I 41 
m 111 
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Taking expectations over the values of p,,(j j i )  and going to the limit yields 

Eq* (37). 1 
When II(h I h)  - 1 for h - h,  Eq. (37) reduces to Eq. (35) for the 

continuous-reinforcement model. I n  general, however, the form of Eq. (37) 
is not the same as that obtained before; the bias parameters, b ( j )  = P(j)t)(j), 
and similarity parameters, tl(i,j), do not separate out as simple products. 

Using the previous notation for m = 2 and letting 111 = n ( l  I 1) and 
11,  = n ( 2  j2) ,  we obtain 

Three special cases are of interest: 

1,  n,  = 11, = 1. Equation (38) reduces to those of Theorem 1 in Sec. 1. 
2. II, = II, = 0. This corresponds to a situation in which the subject 

always is told that the opposite stimulus was presented. The  asymptotic 
response probabilities are 

The equation for the iso-sensitivity curve is 

This is of the same form as Eq. (9) for the II , - II, = 1 case, except that the 
right-hand sides are reciprocals of one another. Thus, the iso-sensitivity 
curve for Ill = 112 = 0 is the reflection (across the line p = q) of the 
corresponding curve for II, = Il, = 1. Another way of putting it  is that the 
two iso-sensitivity curves are identical if p is replaced by 1 - p and q by 
1 - q. 

3. Il, = 1 - Il, = n. This corresponds to an experiment in which s, is 
reported with a fixed probability Il independent of the presentation proba- 
bility P, because the unconditional probability that the experimenter reports 
s, is 

p n l + ( i  - ~ ) ( ~ n , ) = n .  
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The asymptotic response probabilities are 

Not only are p and q equal, but they are independent of the presentation 
probability P and of the similarity indices. We conclude, therefore, that if 
II ,  = 1 - n , ,  then p = q for any experimental conditions-stimulus 
similarities, presentation probabilities, and payoff conditions. This is a very 
strong and directly testable prediction of the model. Furthermore, if 02/Bl 
depends only on the payoffs, as we hope, then the value of p = q is inde- 
pendent of the stimulus similarities and presentation probabilities. This is an 
even stronger prediction; it is not implied by the model alone, but rather it 
follows from our interpretation of the model parameters. 

7. An experimenter-controlled discrimination model 
I n  psychophysical discrimination experiments, the set, Y, of stimuli is 

ordered by some physical relation, > , e-g., weight, size, intensity. Each of 
the m presentations to the subject consists of a h-tuple of the form 
s = ( d l ,  d 2 , - - .  , dk), where each d i c y .  The  subject is to report which of 
the presented stimuli he believes meets the discriminative criterion, such as 
which is the heaviest. This he does by indicating its location in the presen- 
tation. The  nurnber of alternative responses is then k, the number of stimuli 
in each presentation. 

We denote the response set by R, its typical elements by r and r', the 
presentation set by S ,  and its typical elements by s and s'. For each r E R, let 
S, denote the subset of S for which r is the correct response, i.e., s E S, if and 
only if 3, > 3,. for all r' # r. Thus, the subsets S, form a partition of S that 
is one-to-one with the set R. 

, . 1 he conditional probability on trial n of response r given stimulus pre- 
sentation s is denoted by p , , ( ~  I s). Our learning axiom is 

If s' r S,, is presented on trial n, then for all s E S and r E R, 

(42) P n + ~ ( r  I s) = Px(r I 8) + ?~(~,~')O(f')[drr, - P ~ ( Y  I s)I, 
where, for all s' E S,. , O(sl) has the same value, say O(r').  

We assume this about O because, as in the partial reinforcement recogni- 
tion model, wc associate the rate parameters with responses and their out- 
comes. 

THEOREM A. If Eq. (42) holds and if {Zl,) forms a generalized Bernoulli 
chain, then 

fl(s,r)O(r) lim Ej&(r 1 s)] = -- - 
n+ C4 X G ) O ( Y f )  ' 
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where 

(44) i(s,r) = 2 P(sl)q(s,s? 
s'eSr 

and P(sl) is the probability that s' is presented on a trial. 

E b , , + d r  1 41 = 2 P(s*)(E [P.(Y I 91 + 71(s,f1)0(r1){4.1- - E[P.(y 1 s)1 1) 
s' rS 

= E h , ( r  1 91 + O(r) 2 P(s')T(~,~') 
s'rSr 

- E b I i ( ~  I $11 O(yf) 2 p ( ~ 0 ~ l ( ~ P f  1 . 
rl l l (  K ' C . \ ~ .  

The limit is then 

O(y) 2 p(sp)?,(s,s7) 
sirSr 

lirn E [p,,(r I s)] = 
11--* m 2 0(y1) 2 p(~f)v(sJ1) 

r '< I i  s'rS,, 

If ij(s,r), Eq. (44), is substituted, Eq. (43) folloxvs.ll 
In general, thc stimulus set Y has more than k elements, the number 

actually presented on any one trial. In an important special case, however, 
has exactly k elements and S is a subset of the k !  possible orderings of ,y. 

Each s E S has the same set of stimuli and one of them, o*, is the correct one, 
i.e., .J* > o for all J E g - { J * } .  Thus, s E S, i f  and only if 4, = J * .  In  
this casc we assume that the index of similarity, ?j(s,sl), depends only on the 
correct stimulus, J", which is in position r when s' E Sr is presented, and on 
o r ,  the stimulus in that same position in another presentation, s. That is, we 
assume that 

(45) ?I(s,s') - ~ ( 9 r  ,3+) ,  S' S r  

Thcrefore, 

s'e.3, a'.Sr 

The sum 

is the probability that an element of Sr is presented, i.e., the probability that 
r is the correct response on trial n. Equation (43) now becomes 

lim E b l , ( r  1 s)] = 1 
91- Ti 

r'r I( 
where 

b(r) = P(r)O(r) 
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If we note that 4" is a parameter of the whole experiment, we can write 

~ ( ~ r , ~ " )  = ~ ( r )  
and so 

p(r)b(r) lim E b7L(r 1 s)] = -- 
n-• m 

7 ' d t  

This is the same result obtained from the discrimination choice model de- 
scribed (for rn = 3) in Luce (1959). 

Another special case of interest is a design for which the m presentation 
probabilities are all equal and for which the payoffs are such that the 8(r) are 
all equal. Then 

lim E bI,(r 1 s)] = 
- 

n+ m 

s'cS 

I n  a classical discrimination experiment, often used to determine a psycho- 
metric function, each stimulus presentation consists of a standard stimulus 
followed by another stimulus; the subject is to report whether the second 
stimulus is greater or less than the first. Thus, R = (1,2}, and the assump- 
tions that led to Eq. (49) should apply. From that result, we note that the 
asymptotic expected value of p,(r ] s) is not "independent of irrelevant 
alternatives"; its value depends on the entire set of stimulus presentations 
used in the experiment. Thus, according to this theory, the psychometric 
function is not an invariant of the discrimination process, as is usually assumed 
by psychophysicists. I t  is an experimental question whether or not the 
psychometric function in fact depends on the presentation set S. 
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